www.emis-kip.ru

Комплекс учета энергоносителей ЭМИС-Эско 2210

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

EAC

ЗАО «ЭМИС» Россия, Челябинск

Общая информация

В настоящем Руководстве по Эксплуатации (далее по тексту - РЭ) приведены основные технические характеристики, указания по применению и монтажу, правила транспортирования и хранения, а также другие сведения, необходимые для обеспечения правильной эксплуатации комплекса учета энергоносителей ЭМИС-Эско 2210 (далее по тексту – комплекс или ЭМИС-Эско 2210).

Обслуживающий персонал, проводящий эксплуатацию и техническое обслуживание комплексов, должен изучить настоящее РЭ и пройти инструктаж по технике безопасности при работе с электротехническими установками.

Компания «ЭМИС» оставляет за собой право вносить изменения в конструкторскую документацию ЭМИС-Эско 2210, не ухудшающие их потребительских качеств и метрологических характеристик, без предварительного уведомления.

При необходимости получения дополнений к настоящему РЭ или информации по оборудованию ЭМИС, пожалуйста, обращайтесь к Вашему региональному представителю компании или в головной офис.

Любое использование материала настоящего издания, полное или частичное, без письменного разрешения правообладателя запрещается

ИНФОРМАЦИЯ

Перед началом работы следует внимательно изучить настоящее РЭ, а также эксплуатационную документацию (далее по тексту ЭД) на отдельные функциональные блоки комплекса. Это условие является обязательным для обеспечения безопасной эксплуатации и нормального функционирования комплексов.

За консультациями обращайтесь к региональному представителю или в службу тех. поддержки компании «ЭМИС»:

тел./факс: +7 (351) 729-99-12, 729-99-13, 729-99-16

e-mail: support@emis-kip.ru

ВНИМАНИЕ!

Настоящее РЭ распространяется только на комплексы учета энергоносителей ЭМИС-Эско 2210. На другую продукцию ЗАО «ЭМИС» и продукцию других компаний документ не распространяется.

СОДЕРЖАНИЕ

1.	ОПИСАНИЕ И РАБОТА	4
1.1	Назначение и область применения	4
1.2	Состав комплекса учета энергоносителей	4
1.3	Технические характеристики	5
1.4	Метрологические характеристики	6
1.5	Сведения о методиках (методах) измерения	8
1.6	Маркировка и пломбирование	8
2.	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	8
2.1	ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ	8
2.2	Требования к монтажу	9
3.	Техническое обслуживание	9
3.1	Регламентное обслуживание	
3.2	Поверка	9
1.	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	10
5.	УТИЛИЗАЦИЯ	10
3.	СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ	10

1. ОПИСАНИЕ И РАБОТА

1.1 Назначение и область применения

Комплексы учета энергоносителей «ЭМИС-Эско 2210» (далее — комплексы) предна-значены для измерения расхода, давления, температуры, массы и объема жидкостей, пара, газов и газовых смесей (среды), гелиевого концентрата, измерения тепловой энергии в закрытых и открытых системах теплоснабжения (в том числе в системах коммерческого учета), системах охлаждения и в отдельных трубопроводах при определении расхода методом переменного перепада давления на сужающих устройствах или расходомерами с токовыми, импульсными, частотными и цифровыми интерфейсными выходами, контроля измеряемых параметров среды, а также для измерения электрической энергии, в том числе по многотарифной схеме.

Область применения: измерительные системы учета, автоматизированного контроля и управления технологическими процессами на промышленных предприятиях, теплопунктах, теплостанциях, газораспределительных станциях, нефтегазодобывающих и др. предприятиях в условиях круглосуточной эксплуатации.

Комплексы производят учет тепловой энергии в соответствии с «Правилами коммерческого учета тепловой энергии, теплоносителя», утвержденнной постановлением Правительства РФ № 1034 от 18.11.2013 с изменениями на 13 февраля 2019 года.

Расчет теплофизических свойств воды и водяного пара выполняется согласно ГСССД МР 147-2008.

Расчет расхода, массы и объема газов и газовых смесей, приведённых к стандартным условиям, осуществляют измерения в соответствии с ГОСТ 30319.(2,3)-2015, ГОСТ Р 8.662-2009, ISO 20765-2, ГОСТ Р 8.740-2011, ГОСТ 8.611-2013, ГОСТ Р 8.733-2011, ГСССД МР 112-2003, ГСССД МР 134-2007, ГСССД МР 113-2003, МИ 3563-2016, ГСССД МР 118-2005, ГСССД МР 273-2018, ГСССД МР 232-2014..

1.2 Состав комплекса учета энергоносителей

Конструктивно комплексы состоят из следующих компонетнов (средств измерений утвержденных типов, зарегестрированных в Федеральном информационном фонде по обеспечению едниства средств измерений):

- вычислителей:

Преобразователь расчетно измерительный ТЭКОН-19	№ в ФИФ 61953-15
Преобразователь расчетно измерительный ТЭКОН-19Б	№ в ФИФ 35766-07
Вычислитель УВП280	№ в ФИФ 53503-13
Теплоэнергоконтроллер ИМ2300	№ в ФИФ 14527-17
Тепловычислитель СПТ944	№ в ФИФ 64199-19
Тепловычислитель СПТ961	№ в ФИФ 35477-12
Тепловычислитель СПТ962	№ в ФИФ 64150-16
Корректор СПГ742	№ в ФИФ 48867-12
Корректор СПГ761	№ в ФИФ 36693-13
Корректор СПГ762	№ в ФИФ 37670-13
Корректор СПГ763	№ в ФИФ 37671-13

- измерительных преобразователей (ИП) расхода с токовым, частотным, импульсным или цифровым выходом, имеющих пределы допускаемой относительной погрешности:
 - — при измерении расхода жидкости, газа и газовых смесей не более ± 2,0 %;
 - – при измерении расхода пара не более ± 2,5 %;
 - – при измерении воды для учета тепла не более ± 5,0 %;
- счетчиков электрической энергии с импульсным выходом, имеющих пределы допускаемой относительной погрешности не более ±2,0 %;
- измерительных преобразователей абсолютного и избыточного давления с токовым выходом (от 4 до 20) мА, имеющих класс точности не ниже 0,5;
- измерительных преобразователей разности давлений с токовым выходом (от 4 до 20) мА, имеющих класс точности не ниже 0,5;
- измерительных преобразователей температуры классов АА, А и В по ГОСТ 6651-2009 с естественным (НСХ) или унифицированным аналоговым (от 4 до 20) мА выходным сигналом.

Комплексы выпускаются в исполнениях, которые отличаются типами вычислителей, а также типами и количеством первичных измерительных преобразователей входящих в состав комплексов. Количество первичных измерительных преобразователей, входящих в состав комплекса зависит от типа вычислителя и конкретного технологического процесса.

1.3 Технические характеристики

Вычислители, входящие в состав комплекса, предназначены для приема и измерения сигналов первичных измерительных преобразователей и преобразования их в соответствующие физические величины, измеряемые первичными измерительными преобразователями, с последующим расчетом, соответствующих величин.

Вычислитель также обеспечивает ведение архива измеренных и расчитанных значений.

Первичные измерительные преобразователи предназначены для измерения параметров среды и передачи результатов измерений в вычислитель с помощью кабелей связи.

Связь между вычислителем и первичными измерительными преобразователями осуществляется по выходным сигналам, в соответствии с таблицей 1.

Таблица 1 – Выходные сигналы первичных измерительных преобразователей

Измеряемый параметр	Тип выходного сигнала	Диапазон
	число- импульсный	от 0,0001 до 10000 л/импульс
Расход (объем)	частотный	от 0,002 до 10000 Гц
	токовый	4-20 мА
Температура, разность температур	HCX	согласно ГОСТ 6651-09
теплоносителя	токовый	4-20 мА
Давление	токовый	4-20 мА

Комплекс выполняет измерения параметров среды в диапазонах в соответствии с таблицей 2

Таблица 2 – Метрологические характеристики комплексов

Среда (жидкость, пар, газ)	Нормативный документ	Температура, °С	Давление, МПа	
Вода	ГСССД МР 147-2008	от 0 до +500	от 0,1 до 30	
Пар	ГСССД МР 147-2008	от 100 до +500	от 0,1 до 30	
	ГОСТ 30319.2-2015	от -23 до +76	от 0,1 до 7,5	
	ГОСТ 30319.3-2015	от -23 до +76	от 0,1 до 30	
Природный	ГОСТ Р 8.662-2009	от -23 до +76	от 0 до 30	
газ	ISO 20765-2 (алгоритм GERG- 2008)	от -60 до +176	от 0 до 30	
Сухой воздух	ГСССД МР 112-03	от -73 до +125	от 0,1 до 20	
Кислород	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
Диоксид углерода	ГСССД МР 134-07	от -53 до +150	от 0,1 до 10	
Llada-cuaŭ ca	ГСССД МР 113-03	от -10 до +226	от 0,1 до 15	
Нефтяной газ	МИ 3563-2016	от -23 до +76	от 0,1 до 30	
Азот	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
Аргон	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
Водород	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
Ацетилен	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
Аммиак	ГСССД МР 134-07	от -73 до +150	от 0,1 до 10	
C	ГСССД МР 118-05	от -73 до +125	от 0,1 до 10	
Смесь газов	ГСССД МР 273-2018	от -10 до +226	от 0 до 30	
Гелиевый концентрат	ГСССД МР 232-2014	от -20 до +40	от 0,1 до 20	
Произвольная среда	-	от -60 до +500	от 0 до 30	

1.4 Метрологические характеристики

Основные метрологические характеристики комплексов приведены в таблицах 3 и 4 .

Таблица 3 - Метрологические характеристики комплексов

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности ИК массы жидкости, %	±0,25; ±0,3; ±0,35; ±0,6; ±1,0; ±1,2; ±1,7; ±2,0
Пределы допускаемой относительной погрешности ИК массы водяного пара, в диапазоне от 10 до 100 % верхнего предела ИК расхода, %	± 3
Пределы допускаемой относительной погрешности ИК тепловой энергии открытых водяных систем теплоснабжения при измерении расхода в подающем и обратном трубопроводах, %:	
— при отношении $m_{\text{обр}}/m_{\text{под}} \le 0,5,$ в диапазоне Δt от +3 до +20 °C	± 5
— при отношении $m_{\text{обр}}/m_{\text{под}} \leq 0{,}95,$ в диапазоне Δt свыше +20 до +200 °C,	± 4
Пределы допускаемой относительной погрешности ИК тепловой энергии закрытых водяных систем теплоснабжения и отдельных	для класса 1 ±(2+4·∆t _{min} /∆t +

трубопроводов, а также открытых водяных систем теплоснабжения при измерении расхода в подающем (или обратном) трубопроводе и в трубопроводе ГВС (подпитки) при разности температур в обратном трубопроводе ($t_{\text{обр}}$) и трубопроводе подпитки ($t_{\text{ми}}$) \geq 3 °C, и разности температур (Δt) в подающем и обратном трубопроводах (в отдельном трубопроводе относительно температуры холодного источника) в диапазоне от +3 до +200 °C, %,	$+0,01 \cdot G_{max}/G)$ для класса 2 $\pm (3+4 \cdot \Delta t_{min}/\Delta t + +0,02 \cdot G_{max}/G)$
где G_{max} — верхний предел диапазона измерений расхода в подающем трубопроводе, м ³ /ч;	
G – измеренное значение расхода воды, м ³ /ч;	
Δt_{min} — нижний предел диапазона измерений разности температуры комплекса, ${}^{\rm o}{\rm C}$	
Пределы допускаемой относительной погрешности ИК тепловой энергии паровых систем теплоснабжения и систем охлаждения (класс A), %	±3
Пределы допускаемой относительной погрешности ИК электрической энергии, %	± 2
Пределы допускаемой относительной погрешности ИК тепловой энергии паровых систем теплоснабжения (класс Б), %	
в диапазоне расхода от 10 до 30%	± 5
в диапазоне расхода свыше 30 до 100%	± 4
Пределы допускаемой абсолютной погрешности ИК температуры жидкостей, воды и пара, °С	±(0,6+0,004· t)
Пределы допускаемой приведенной к диапазону измерений погрешности ИК давления для пара, %	±1
Пределы допускаемой приведенной к диапазону измерений погрешности ИК давления для (ИК разности давления) жидкости, воды, %	±2
Пределы допускаемой относительной погрешности ИК массы (объема) воды, при измерении тепловой энергии, %	
– в системах теплоснабжения	± (2+0,02G _{max} /G), но не более ±5%;
– на источниках тепловой энергии	± (1+0,01G _{max} /G), но не более ±3,5%
Пределы допускаемого суточного хода часов для ТЭКОН-19, с	±9
Пределы допускаемой относительной погрешности измерения текущего времени для ТЭКОН-19Б, УВП-280, ИМ2300, СПТ944, СПТ961, СПТ962, СПГ742, СПГ761, СПГ762, СПГ763, %	±0,01
где m _{под} и m _{обр} – значения массы воды в подающем и обратном тр	убопроводах.

Qmin и Qmax – нижний и верхний пределы диапазона измерений расхода в подающем трубопроводе.

Таблица4 – Пределы допускаемой относительной погрешности измерительных каналов расхода, термодинамической температуры, давления гаща и газовых смесей, пределы допускаемой относительной погрешности коэффициента сжимаемости в зависимости от уровня точности измерений комплекса

Измеряемые параметры	Пределы допускаемой относительной погрешности, % для уровня точности						
	A	Б	B1	B2	Г1	Γ2	Д
Термодинамическая температура газа	±0,20	±0,25	±0,3	±0,3	±0,5	±0,6	±0,75
Абсолютное давление газа	±0,30	±0,45	±0,85	±0,70	±1,2	±1,7	±2,0
Расход и объем в рабочих условиях	±0,50	±0,75	±1,00	±1,10	±2,0	±1,5	±2,50
Объемный расход и объем газа, приведенные к стандартным условиям при изменении расходомерами объемного расхода	±0,75	±1,00	±1,50	±1,50	±2,50	±2,50	±3,00
Коэффициент сжимаемости	±0,30	±0,40	±0,40	±0,40	±0,50	±0,75	±1,00

Пределы допускаемой относительной погрешности измерения объемного расход и объем газа, приведенные к стандартным условиям в зависимости от категории и класса СИКГ свободного нефтяного газа согласно ГОСТ Р 8.733.

1.5 Сведения о методиках (методах) измерения

Методика осуществления коммерческого учета тепловой энергии, теплоносителя, утвержденная приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 17 марта 2014 г. №99/пр, МИ 2714-2002; ГОСТ 8.586.5-2005; ГОСТ Р 8.740-2011; ГОСТ 8.611-2013.

1.6 Маркировка и пломбирование

Маркировка и схема пломбировки преобразователей и вычислителей, входящих в состав комплексы, а также способы ее нанесения в соответствии с эксплуатационной документацией на соответствующие составные части комплекса.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

К монтажу, эксплуатации, техническому обслуживанию комплексов должны допускаться лица, изучившие настоящее РЭ и Эксплуатационную документацию на изделия входящие в состав комплексов, а также

прошедшие инструктаж по технике безопасности при работе с электротехническими устройствами.

Все операции по эксплуатации и поверке комплексов необходимо выполнять с соблюдением требований по защите от статического электричества. Указания мер безопасности при монтаже и эксплуатации измерительных преобразователей и контроллеров приведены в эксплуатационнной документации на конкретное изделие.

При проведении монтажных, пуско-наладочных работ и ремонта запрещается:

- подключать измерительные преобразователи и контроллеры к источнику питания с выходным напряжением, отличающимся от указанного в эксплуатационной документации на конкретное изделие;
- использовать электроприборы, электроинструменты без их подключения к шине защитного заземления, а также в случае их неисправности;
- установка и эксплуатация комплексов в условиях превышения предельно допустимых параметров давления и температуры измеряемой среды;

При проведении монтажных работ опасными факторами являются:

- напряжение питания переменного тока с действующим значением 220В и выше, частотой 50 Гц (при расположении внешнего источника питания в непосредственной близости от места установки);
- избыточное давление измеряемой среды в трубопроводе;
- повышенная температура измеряемой среды.

2.2 Требования к монтажу

Монтаж комплексов следует выполнять в соответствии с проектной документацией на узел учета и требованиями эксплуатационной документации на конкретное изделие, входящее в состав комплекса.

3. Техническое обслуживание

3.1 Регламентное обслуживание

Комплекс не требует специального обслуживания.

Периодический осмотр комплекса необходимо проводить с целью контроля соблюдения условий эксплуатации, отсуствия внешних повреждений, наличия напряжения питания, наличия пломб на составных частях комплекса, работоспособности.

Периодичность осмотра устанавливается в зависимости от условий эксплуатации конкретного комплекса.

3.2 Поверка

Поверка комплекса осуществляется по документу МП 96-221-2019 «Комплексы учета энергоносителей «ЭМИС-Эско 2210. Методика поверки».

Первичную поверку проводят до ввода комплексов в эксплуатацию и после ремонта, периодическую по истечении срока интервала между поверками.

Порядок и периодичность поверки составных частей комплекса определены соответствующими методиками поверки.

Знак поверки наносится в соответствующий раздел формуляра и/или на бланк свидетельства о поверке.

4. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

При транспортировании комплекса рекомендуется соблюдать следующие требования:

- комплекс в транспортной упаковке предприятия-изготовителя транспортируется любым видом транспорта в соответствии с условиями 5 по ГОСТ 15150:
- транспортирование комплекс в упаковке предприятия-изготовителя может проводиться любым видом транспорта в соответствии с правилами перевозки грузов этого вида транспорта. Срок пребывания в условиях транспортировки не более 1 месяца;
- способ укладки ящиков на транспортирующее устройство должен исключать возможность их перемещения;
- во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

Длительное хранение комплекса рекомендуется производить только в упаковке предприятия-изготовителя. Преобразователи после распаковывания должны храниться на стеллажах в закрытом помещении. Условия в распакованном виде – 1 по ГОСТ 15150.

Дополнительные требования по хранению изделий указаны в эксплуатационной документации на конкретное изделие, входящее в состав комплекса.

УТИЛИЗАЦИЯ

Комплекс не содержит вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды в процессе и после окончания срока службы и при утилизации.

Утилизация комплекса осуществляется отдельно по группам материалов: пластмассовые элементы, металлические элементы корпуса и крепежные элементы.

6. СВЕДЕНИЯ О СОДЕРЖАНИИ ДРАГОЦЕННЫХ МЕТАЛЛОВ

Сведения о содержании драгоценных металлов содержатся в эксплуатационной документации на конкретное изделие, входящее в состав комплекса.